Saturation transfer electron spin resonance of Ca2(+)-ATPase covalently spin-labeled with beta-substituted vinyl ketone- and maleimide-nitroxide derivatives. Effects of segmental motion and labeling levels.

نویسندگان

  • L I Horváth
  • L Dux
  • H O Hankovszky
  • K Hideg
  • D Marsh
چکیده

The Ca2(+)-ATPase in native sarcoplasmic reticulum membranes was selectively spin-labeled for saturation transfer electron spin resonance (ESR) studies by prelabeling with N-ethylmaleimide and by using low label/protein ratios. Results with the nitroxide derivative of the standard sulphydryl-modifying reagent, maleimide, were compared with a series of six novel nitroxide beta-substituted vinyl aryl ketone derivatives which differed (with two exceptions) in the substituent at the ketone position. The two exceptions had a different electron withdrawing group at the alpha-carbon, to enhance further the electrophilic character of the beta-carbon. Although differing in their reactivity, all the conjugated unsaturated ketone nitroxide derivatives displayed saturation transfer ESR spectra indicative of much slower motion than did the maleimide derivative. The saturation transfer ESR spectra of maleimide-labeled Ca2(+)-ATPase therefore most likely contain substantial contributions from segmental motion of the labeled group. The effects of the level of spin labeling were also investigated. With increasing degree of spin label incorporation, the linewidths of the conventional ESR spectrum progressively increased and the intensity of the saturation transfer spectrum dropped dramatically, as a result of increasing spin-spin interactions. The hyperfine splittings of the conventional spectrum and the outer lineheight ratios of the saturation transfer spectrum remained relatively unchanged. Extrapolation back to zero labeling level yielded comparable values for the effective rotational correlation times deduced from the saturation transfer spectrum intensities and from the lineheight ratios, for the vinyl ketone label. For the maleimide label the extrapolated values from the integral are significantly lower than those from the lineheight ratios, probably because of the segmental motion. Comparison is made of the effective rotational correlation time for the vinyl ketone label with the predictions of hydrodynamic models for the protein diffusion, in a discussion of the aggregation state of the Ca2(+)-ATPase in the native sarcoplasmic reticulum membrane. The implications for the study of protein rotational diffusion and segmental motion, and of the proximity relationships between labeled groups, using saturation transfer ESR spectroscopy are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vinyl ketone reagents for covalent protein modification. Nitroxide derivatives suited to rotational diffusion studies by saturation transfer electron spin resonance, using membrane-bound Na,K-ATPase as an example.

The reactivity of a series of substituted vinyl ketone nitroxides with an integral membrane protein, the Na,K-ATPase, is described. Increasing the electrophilicity of the conjugated double bond enhances reactivity markedly, with some spin labels showing higher reactivity than the conventionally used maleimide derivatives. The spectroscopic characteristics of the spin-labeled protein are also be...

متن کامل

Biophysics Rotational motion of the sarcoplasmic reticulum Ca 2 + - ATPase ( saturation transfer electron paramagnetic resonance / spin labels / membranes )

Using saturation transfer electron paramagnetic resonance, we have detected the rotational motion of a spin label rigidly attached to the sarcoplasmic reticulum Ca2 -ATPase (ATP phosphohydrolase, EC 3.6.1.3). At 40C, the spectrum indicates an effective rotational correlation time of 60 jsec, determined by comparison with reference spectra obtained from theoretical calculations and from experime...

متن کامل

Rotational motion of yeast cytochrome oxidase in phosphatidylcholine complexes studied by saturation-transfer electron spin resonance.

Cytochrome oxidase from yeast has been covalently labeled with a nitroxide derivative of maleimide and reconstituted in lipid-substituted complexes with dimyristoyl-, dioleoyl-, or dielaidoyl-phosphatidylcholine. The rotational mobility of the enzyme in the complexes has been studied as a function of temperature and time, and of lipid/protein ratio, using saturation-transfer electron spin reson...

متن کامل

Rotational diffusion of mitochondrial ADP/ATP carrier studied by saturation-transfer electron spin resonance.

The rotational mobility of the mitochondrial ADP/ATP carrier has been studied solubilized in Triton micelles, reincorporated in phospholipid liposomes, and in mitochondria. Spin-labeled analogues of the noncovalent inhibitors carboxyatractyloside and atractyloside were found to be strongly immobilized when bound to the carrier [Munding, A., Beyer, K., & Klingenberg, M. (1983) Biochemistry 22, 1...

متن کامل

Rotational dynamics of lipid and the Ca-ATPase in sarcoplasmic reticulum. The molecular basis of activation by diethyl ether.

We have investigated the role of lipid and protein dynamics in the activation of the Ca2+-dependent ATPase in sarcoplasmic reticulum (SR) by diethyl ether. Conventional and saturation-transfer electron paramagnetic resonance (EPR) were used to probe rotational motions of spin labels attached either to fatty acid hydrocarbon chains or to the Ca-ATPase in SR. We confirm previous studies (Salama, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 58 1  شماره 

صفحات  -

تاریخ انتشار 1990